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The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated,
specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering
VRS. The available wind tunnel and flight test data for rotors in vortex ring state are
reviewed. Test data for axial flow, nonaxial flow, two rotors, unsteadiness, and vortex ring
state boundaries are described and discussed. Based on the available measured data, a VRS
model is developed. The VRS model is a parametric extension of momentum theory for
calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time
simulations. This inflow model is primarily defined in terms of the stability boundary of the
aircraft motion. Calculations of helicopter response during VRS encounter were performed,
and good correlation is shown with the vertical velocity drop measured in flight tests.
Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off
behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of
an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring
state.

Notation.

a lift-curve slope

az vertical acceleration

A rotor disk area, πR2

B tip loss factor

c blade chord

CP rotor power coefficient, P/ρ(ΩR)3A

CQ rotor torque coefficient, Q/ρ(ΩR)2RA

CT rotor thrust coefficient, T/ρ(ΩR)2A

N number of blades

rc blade root cutout

r blade radial station

R blade radius

P rotor power

Pi rotor induced power
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Po rotor profile power

Q rotor torque

T rotor thrust

v rotor induced velocity

V total velocity, √Vx2+Vz2

vh velocity scale, √T/2ρA

Vx rotor horizontal speed

Vz rotor vertical speed (positive in climb)

Vtip rotor tip speed, ΩR

VRS vortex ring state

α rotor disk angle of attack (positive in descent)

θtw blade twist

θ75 collective pitch (75% radius)

κ empirical inflow factor

λh velocity scale, √CT/2

ρ air density

σ rotor solidity, Nc/πR

τ time constant of inflow equation

Ω rotor rotational speed
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Introduction

The behavior of a rotor operating in vortex ring state
(VRS) has long been familiar to aerodynamicists, and a
substantial number of VRS test programs have been reported
(Refs. 1–50). Yet vortex ring state is a complex
phenomenon, involving large-scale unsteady wake flow, and
there is much to be done to thoroughly understand the
aerodynamics and develop accurate prediction methodologies.
There has been renewed interest recently in vortex ring state,
because of the possibility of operating rotorcraft in steep
descent for approach to landing, and in particular because of
the influence of VRS on tiltrotor roll control and response.

The subject of the present paper is the influence of vortex
ring state on rotorcraft flight dynamics, specifically the
vertical velocity drop of helicopters and the roll-off of
tiltrotors encountering VRS. The objective is to develop a
model of vortex ring state that is suitable for flight dynamics
calculations and real-time piloted simulation, including
training simulations. The model is based on existing flight
test and wind tunnel test data, and is applicable to both
helicopters and tiltrotors.

Overview

A rotor is operating in vortex ring state when it is
descending at low forward speed with a vertical velocity that
approaches the value of the wake-induced velocity at the
rotor disk. In this condition the rotor tip vortices are not
convected away from the disk rapidly enough, and the wake
builds up and periodically breaks away (figure 1). The tip
vortices collect in a vortex ring, producing a circulating flow
down through the rotor disk, then outward and upward
outside the disk. The resulting flow is unsteady, hence a
source of considerable low frequency vibration and possible
control problems. For descent at forward speeds sufficiently
high that the wake is convected away from the rotor, vortex
ring state does not develop.

Vortex ring state encounter can produce a significant
increase in the descent rate of a helicopter or a roll-off of a
tiltrotor. Figure 2 shows helicopter Vz drop and tiltrotor
roll-off points measured in flight tests (Refs. 44, 46, 47,
51). In figure 2, Vz is the rotor vertical velocity and Vx is
the rotor horizontal velocity. This motion is an instability
of the helicopter vertical or tiltrotor roll dynamics. If the
aircraft rate becomes sufficiently large as a result of the
instability, it will not be possible to recover using collective
control for the helicopter or lateral cyclic control (differential
collective) for the tiltrotor. While the response to control is
still a positive acceleration increment, the control authority
is not sufficient to reverse the motion. Hence recovery from
VRS encounter requires a drop in collective and forward
cyclic for a helicopter, or a forward nacelle tilt for a tiltrotor.
Basically it is necessary to fly out of the instability region.

Also shown in figure 2 is the stability boundary specified for
the VRS model developed in this paper.

It is remarkable that the flight test data for a helicopter
and a tiltrotor define essentially the same VRS boundary in
figure 2, in spite of a different manifestation of the
instability (vertical velocity drop for a helicopter, roll-off for
a tiltrotor), and large differences in twist and solidity between
the rotors of the two aircraft. This implies that basically the
same aerodynamic mechanism is responsible for the behavior
of both helicopters and tiltrotors in VRS.

The instability of the aircraft in vortex ring state is a
consequence of the form of the rotor inflow as a function of
descent rate. Figure 3 shows the total inflow through the
rotor disk, Vz+v (where v is the induced velocity) for a rotor
in vertical descent. Momentum theory is not valid in descent
until the total velocity is substantially negative (so the
velocity is again in the same direction throughout the flow
field), although it provides a reasonable result for low
descent rate. The measured data show that at moderate descent
rates (in VRS), the total velocity Vz+v increases as the
descent rate increases. As the rotor descends into VRS, the
energy losses resulting from the recirculating flow increase,
hence the power (total inflow Vz+v) can increase. Where
d(Vz+v)/dVz is negative (roughly Vz/vh = –0.5 to –1.5 in
figure 3), the vertical motion (and roll motion of a tiltrotor)
is unstable, because an increase in descent rate at constant
collective will produce an increase in total inflow and hence
a reduction in thrust — negative damping. This instability
mechanism has been described by several authors (Refs. 18,
25, 34, 35, 43, 44). More investigations have been focused
on the unsteady nature of VRS aerodynamics. The instability
is defined by the character of the mean thrust and mean
power of the rotor in VRS, not the unsteadiness of the flow.
The challenge is to develop a model of the rotor mean
inflow, applicable to simple calculations and real-time
simulation, that includes this character that leads to the
unstable flight dynamics.

Rotor Inflow

The flow state of a helicopter is a global phenomenon,
involving low speed wake velocities in a region on the order
of the rotor radius. So rotor tip speed and Mach number are
not key parameters of the flow. It follows from dimensional
analysis (Ref. 52) that the appropriate velocity scale of the
flow is vh = √T/2ρA, where T is the rotor thrust, ρ the air
density, and A the rotor disk area. The factor of 2 is included
for convenience, so vh is the ideal hover induced velocity
(hence the subscript h).

The flow state depends on the rotor vertical velocity Vz
(positive for climb) and horizontal velocity Vx .
Alternatively, the rotor angle of attack α can be used (Vz =
–Vxtanα, so α = 90 deg for vertical descent). In the context
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of momentum theory, the mean induced velocity through the
rotor disk is rigorously defined in terms of the rotor induced
power: v = Pi/T. The parasite and climb power of the rotor
is given by TVz. Hence Vz+v = P/T represents the total
power of the rotor, except for profile power Po. In
dimensionless terms, the mean induced velocity has the form

v/vh = Pi/Ph = function(Vz/vh, Vx/vh)

where Ph = Tvh is the ideal hover power.

Momentum theory provides an estimate of the rotor
induced velocity (see Ref. 52). The rotor is modelled as a
circular disk that sustains a pressure jump, so the
aerodynamic problem is steady and details of the rotor blade
geometry are not considered. It is assumed that a well defined
slipstream exists that is the boundary of the flow through
the rotor disk. The equations of mass, momentum, and
energy conservation for the entire system are solved to
obtain the rotor power for a given thrust. The solution is
formulated in terms of the induced velocity v at the rotor
disk, and the induced velocity in the far wake of the rotor, w
= 2v. The minimum induced power (ideal performance) is
obtained with the far wake velocity w constant throughout
the wake section, which for small inflow implies uniform
induced velocity v and uniform pressure ∆p = T/A at the
rotor disk. The momentum theory solution in axial flow is

v = − (Vz/2) + √(Vz/2)2 + vh2 for Vz > 0

v = − (Vz/2) − √(Vz/2)2 − vh2 for Vz < −2vh

which is plotted in figure 4. The total velocities in the far
field, at the rotor disk, and in the far wake are Vz, Vz+v, and
Vz+2v respectively. At the lines Vz = 0, Vz+v = 0, and
Vz+2v = 0 one of these velocities changes directions, so
these lines define regions with different flow states (figure
4). The inflow states for axial flow are: normal working
state (Vz > 0), vortex ring state (Vz < 0 and Vz+v > 0),
turbulent wake state (Vz < 0, Vz+v < 0, Vz+2v > 0), and
windmill brake state (Vz < 0, Vz+2v < 0). Only for the
normal working state and windmill brake state is the
velocity in the same direction throughout the flow field, so
only in these regions is momentum theory valid. In the
vortex ring state, the inflow is down through the rotor disk
and in the far wake (according to momentum theory
assumptions) but upward in the external flow.

For small rates of descent, the flow near the rotor disk is
similar to that assumed by momentum theory, and it is
found that the momentum theory solution still gives a
reasonable estimate of the power. But as the descent rate
increases, the total velocity through the disk Vz+ v
approaches zero, implying that the wake is not being
convected away from the disk. In the turbulent wake state,
the inflow is up through the rotor disk and in the external

flow, but still downward in the far wake (according to
momentum theory assumptions). So the wake is once more
being convected away from the disk (upward now), although
momentum theory does not give a useful estimate of the
power. Real autorotation of the rotor (zero total power,
including profile losses) occurs in the turbulent wake state.
At ideal autorotation, P/T = Vz+v = 0, the flow through the
rotor disk is zero, and the momentum theory result for axial
flow is singular.

Figure 4 shows momentum theory in terms of both total
velocity Vz+v and induced velocity v, as a function of
vertical velocity Vz. The Vz+v form was introduced by Lock
(Ref. 10), the v form by Hafner (Ref. 11). Earlier practice
followed Glauert (Ref. 5), plotting 1/F vs. 1/f, where

  1/F = 4πρ(Vz+v)2r/(dT/dr)=(Vz+v)2/(T/2ρA) = (Vz+v/vh)2

  1/f = 4πρVz2r/(dT/dr) = Vz2/(T/2ρA) = (Vz/vh)2

Such plots are not very useful, because the sign of the
velocities is lost, and by squaring the velocities their
behavior near zero is obscured.

Glauert made the connection between a rotor in axial flow
and a circular wing, to obtain a momentum theory
expression for the induced velocity in forward flight as well
as axial flow:

v = 
vh2

√Vx2 + (Vz+v)2

(Ref. 52). Figure 5a shows the momentum theory solution
for several values of horizontal velocity Vx. In forward flight
(Vx >  0) the singularity of momentum theory at ideal
autorotation is eliminated, but it is expected that the result is
still invalid near Vz+v = 0 until Vx is sufficiently large (that
is, until Vx produces sufficient mass flow through the rotor
disk and convects the wake away from the disk). A wind
tunnel test of a rotor in descent is most conveniently
conducted using a set of fixed rotor angles α. Figure 5b
shows the momentum theory solution as a function of Vz
and α; figure 5c shows the solution as a function of V =
√Vx2+Vz2 and α.

In practical applications of momentum theory, a
multiplicative factor κ is introduced: v = κvideal. The factor
κ accounts for nonideal induced losses, including effects of a
finite number of blades and nonuniform loading. In hover κ
= 1.10 to 1.15 typically. In high speed forward flight κ
becomes very large because of the reduction of the effective
span of the loading on the rotor disk.

Measurements of the performance of a rotor can be used
to define the induced velocity. Test data must be the basis for
the induced velocity in vortex ring state and turbulent wake
state, where momentum theory is not valid. From the
definition of the induced velocity in terms of power (P/T), it
follows that
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Vz+v = 
P − Po

T

where P is the total rotor power and Po is the profile power.
This result depends on the estimate of profile power.
Frequently it is assumed that the profile power is constant,
independent of the climb/descent rate and forward speed (at
least for low forward speed). Alternatively, blade element
theory can be used to obtain the inflow from measurements
of rotor thrust and collective pitch (T&θ):
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for flapping and rigid rotors respectively (Ref. 52). Here B is
the tip loss factor; rc the root cutout; and a the lift-curve
slope. This result depends on the assumptions of no stall and
constant lift-curve slope. A check of the evaluation of the
induced velocity using these methods is provided by hover,
where v = κvideal with a reasonable value of κ must be
obtained. Both the T&θ method and the P/T method give an
r-weighted value for the induced velocity (from ∫ λuT dr and

∫ λ dCT respectively; see Ref. 52). So the two methods
should give nearly identical results, as illustrated in figure 3.
Different results from the two methods imply problems with
the measured performance data.

The basic scaling for the rotor aerodynamics in vortex
ring state is based on the air density, rotor radius, and vh =
√T/2ρA. Thus the principal result has the dimensionless
form v/vh = function(Vz/vh, Vx/vh) = function(V/vh, α).
The other parameters of the rotor must also have some
influence: twist, planform, number of blades, solidity,
collective, tip speed, Reynolds number, Mach number. With
the operating condition defined by rotor thrust, collective
pitch is the dependent variable. Twist, planform, solidity,
and number of blades must affect the loading distribution. If
the Reynolds number is too small, the wake structure and
the blade maximum lift will be influenced. If the Mach
number is large, the blade loading will be influenced.

The tip speed is an alternative velocity scale, introducing
λh = vh/ΩR = √CT/2 and the advance ratios µx = Vx/ΩR,
µz = Vz/ΩR. The parameters CT and µ influence the detailed
structure of the loading and wake. For example, µ defines the
geometry of the individual tip vortices, and the vertical
spacing of the wake helices h and the bound circulation (tip
vortex strength) Γ can be written

h/R  =  v (2π /ΩN) / R =  √CT/2  (4π /N)  (v/vh)

Γ/vhR  ≅  [T/(0.5 NρΩR2] / vhR  =  (4π /N) √CT/2

Γ/ΩR2  ≅  [T/(0.5 NρΩR2] / ΩR2  =  (4π /N) CT/2

To the extent that rotors operating at similar CT/σ  are
considered (the blade mean lift coefficient is proportional to
CT/σ), a variation of solidity implies a variation of CT. So
solidity can also be viewed as having a direct effect on the
details of the wake, along with CT and µ.

Test Data

The following sections review the available test data for
rotors operating in vortex ring state. Table 1 summarizes the
principal sources of data, and figure 6 shows the twist and
solidity of the rotors tested. This review includes
descriptions, paraphrased from the papers cited, of the
behavior of rotors and helicopters in vortex ring state.

In many cases it was necessary for the purposes of the
present work to obtain the rotor inflow from the test data as
originally published. The inflow data obtained from the
mean performance, for a single rotor in axial flow, are
presented with this review. Then the measured data for
nonaxial flow and for two rotors are presented. Finally the
VRS boundaries and the available information on
unsteadiness are discussed.

Lock and Glauert (1926)

Lock (Refs. 1, 2, 4) produced the earliest data commonly
cited for a rotor in vortex ring state. A 3-ft diameter, two-
bladed propeller was tested in a 7-ft wind tunnel, for axial
flow only. The blades were twisted with a constant
geometric pitch, with a ratio of pitch to diameter of P/D =
0.3. The rotor root cutout was 0.167, and the solidity σ =
0.0737.

Glauert (Ref. 5) obtained the rotor inflow for these tests,
using the measured thrust and collective. For the data from
Ref. 2, results were obtained based on the uncorrected tunnel
velocity (f) and based on the velocity measured at the plane
of the airscrew disk (f1). For the data from Ref. 4, only the
uncorrected tunnel speed was used.

The results were presented in several reports (Refs. 4, 5,
10, 16). Figure 7 shows the data. Evidently the influence of
the wind tunnel was significant, for the inflow was actually
less than momentum theory in the turbulent wake and
windmill brake states. The inflow value at hover in contrast
was substantially greater than momentum theory (κ = 1.4).
Comparison with other data sets confirms that these results
are not accurate in vortex ring state.

Glauert (Ref. 5) also considered data obtained by Munk
(Ref. 3). These data were from a test of windmilling, 0.60-m
diameter propellers in a 5-ft open jet wind tunnel. The data
give a drag coefficient of about CD = (2vh/V)2 = 1.70 and
1.57 for two propellers, which is significantly higher than
the drag of a parachute. A more reasonable result is V/vh =
1.8 or so at autorotation (Ref. 52), hence CD = 1.2.
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Hafner (1947)

Hafner (Ref. 11) noted that the results of wind tunnel
experiments with propellers in axial flow (Lock) did not give
very satisfactory agreement with performance of full size
rotors. Hafner collected various (very incomplete) data from
tests on the Hafner Gyroplane, and from other investigators,
and produced a new presentation of the induced flow. When
Stewart (Ref. 12) presented Brotherhood's results, Hafner
observed that his curve was based on 20% theory, 20%
experimental data, and the remainder pure guess-work.

Reeder and Gustafson (1949)

Reeder and Gustafson (Ref. 15) conducted flight tests of a
Sikorsky R4 helicopter. In determining the power required at
zero airspeed with varying rates of descent, a region was
encountered in which control could not be maintained. If the
power was insufficient to maintain descent at less than 500
ft/min, the helicopter would slowly increase its vertical
velocity. At about 500 ft/min, the vibration became quite
pronounced. Rather violent, random yawing motions then
occurred with some roll, the rate of descent increased rapidly,
the rotational speed of the rotor varied noticeably, and more
often than not the helicopter would eventually pitch nose
down and recover by gaining speed, despite application of
considerable rearward control. This behavior had many
variations which apparently depended on small horizontal
velocities and on power conditions. In some cases the
vibration was encountered at only 300 ft/min. Loss of
control appeared most severe when the power was as high as
possible at the required rate of descent. No trouble was
encountered for power settings permitting steady descents of
about 1500 ft/min and higher. Motion picture studies of
tufted blades during some of these cases showed no stalling,
but did show pronounced and irregular blade bending.

Brotherhood (1949)

Brotherhood (Ref. 16) conducted flight tests on a
Sikorsky R4-B (Hoverfly Mk. I), obtaining the rotor inflow
from both power and blade angle measurements. These
results were earlier reported by Stewart (Ref. 12), who also
provided a good description of VRS. The R4-B was a three-
bladed helicopter with untwisted blades and a solidity of
0.0576. The disk loading was 2.35 lb/ft2 for the test. The
measurements included the weight (giving rotor thrust,
neglecting download), blade angle, engine conditions, rotor
speed, and rate of descent. Engine power was obtained from
the maker's charts for a given manifold pressure and engine
speed. An estimate of the combined transmission loss,
engine cooling power, and tail rotor power was subtracted.
Finally, a constant value of profile power was subtracted,
and the inflow from power was calculated as Vz+v = P/T.
The inflow from blade angle was calculated using blade

element theory, with the measured thrust, rotor speed, and
collective.

Figure 8 shows Brotherhood's results for the inflow,
along with Hafner's curve, and Brotherhood's version of
Lock's data. These results are more reasonable for Vz/vh at
ideal autorotation, but the inflow does not exhibit the
negative slope of Vz+v vs. Vz that implies the flight
dynamics instability.

Drees (1949)

Drees (Refs. 17–20) conducted an investigation of the
inflow states of a rotor. A flow visualization test of a small
rotor (Refs. 18 and 19) produced excellent pictures
illustrating vortex ring state (such as figure 1). Drees
identified a region of roughness, in vertical flight for Vz/vh
= –0.62 to –1.53, extending in forward flight to Vx/vh =
1.0. In this region the behavior is very rough, in attitude as
well as in control, and unexpected loss of altitude and/or
large nose-down pitching moments may occur. Drees noted
that an unstable increase of collective pitch and/or power is
necessary to maintain the relative position of the helicopter.
The cause of the nose-down pitching moment was identified
as the tailboom operating in an upflow of rather high
velocity, giving a nose-down pitching moment, in particular
if the boom is not streamlined.

The rough behavior of the helicopter in vortex ring state
was attributed to the unstable character of the flow. During
the flow visualization tests (Ref. 20), a periodic tumbling
motion of the rotor disk was observed, caused by the fact
that a complete vortex ring around the tip circle was never
obtained. If the vortex on one side of the disk was building
up, the vortex on the other side was seeking to get free to be
carried away with the surrounding air. A moment later a new
vortex was formed to replace this last one. The rough
behavior was more pronounced for descent in forward flight
than in vertical flight, but a very regular periodicity was
observed. The rotor disk tumbled regularly with the same
period as the shedding of the trailing vortices. The period of
the model rotor was about 2 seconds. At a higher forward
speed the rough behavior of the rotor in the vortex ring state
disappeared because the vortices were blown away before
they were able to build up a vortex ring around the rotor.

Castles and Gray (1951)

Castles and Gray (Ref. 21) conducted a wind tunnel test
of rotors operating in vortex ring state. Four rotors were
tested: constant chord, untwisted, 6-ft diameter; 3:1 taper,
untwisted, 6-ft diameter; constant chord, –12 deg twist, 6-ft
diameter; constant chord, untwisted, 4-ft diameter. Each rotor
had a thrust-weighted solidity of σ = 0.05, with NACA 0015
airfoils. The wind tunnel was 9-ft diameter, open jet, with a
10-ft long test section. The rotors were operated in axial
flow.
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The errors in the data obtained by Lock (Ref. 4) were
attributed to elastic twist and an incorrect velocity. Castles
and Gray corrected their results for the blade dynamic twist
(the elastic torsion produced by the propeller moment). This
correction was 11–18% of the collective for the first rotor,
and 2–6% for the other rotors. They measured the
approximate equivalent free-stream velocity, based on the
wind tunnel fan speed. The data presented in Ref. 21 include
the thrust coefficient CT, and a torque coefficient increment
∆CQ obtained by subtracting the torque coefficient at zero
thrust and zero velocity from the measured torque coefficient.
Castles and Gray used blade element theory to obtain the
inflow from the measured thrust and collective, and from the
measured torque increment and collective. For the present
paper, the inflow was calculated using Vz+v = P/T, with the
climb and induced power estimated by subtracting an
estimate of the profile power increase with thrust: CP =
∆CQ – ∆CPo. Based on a drag increase with angle of attack
of ∆cdo = 1.25α2, it follows

∆CPo = 
σ
8

 ∆cdo = 
σ
8

 1.25 (6CT/σa)2 = 3.125 CT2

using σ = 0.05 and a = 6.0.

Figure 9 presents the inflow data for the four rotors
tested, using the results obtained from T&θ by Castles and
Gray and the results obtained from P/T as described above.
No influence of thrust, rotor speed, or blade radius was
observed. The influence of twist was described as an increase
in rate of descent at ideal autorotation by 10%; peak v/vh
increased 24%, at 17% higher Vz/vh; and fluctuations in
force and moment very much larger.

The data of Castles and Gray shows a significant
influence of twist. The twisted rotor has a distinct negative
slope of Vz+v, while the curve is nearly flat for the
untwisted rotors. However, the possibility must be
considered that there are significant facility effects with a 6-ft
rotor tested in a 9-ft wind tunnel.

Stewart (1951)

Stewart (Ref. 22) described flight experience in vortex-
ring conditions with several helicopters: Sikorsky R-4B, R-
6, S-51, Bell 47, and Bristol 171. The helicopter behavior
varied from mild wallowing on the best type to a complete
loss of control on the worst case. These effects were
attributed to the turbulent-flow changes in the vortex ring
state. The loss of control was thought to be caused by the
large changes in pitching moments on the fuselage with
small displacements of the helicopter relative to the unusual
flow pattern.

For the R-4B, the behavior in VRS was much worse than
the other types tested. There was a great deal of wallowing or
unsteadiness, random yawing movements, and considerable

increase in vibration level. Then there was loss of control in
the form of nose-down pitching. Full backward movement of
the stick did not prevent violent nose-down pitching, and the
helicopter attained a pitch angle of about 40 deg. The flight
speed increased rapidly to about 40 mph with a loss in
height before control was regained. Decreasing collective
pitch when the unsteady conditions were approached
precipitated the nose-down pitching. Increase of pitch and
power, if applied immediately when the unsteadiness began,
could suppress loss of control. But this was only a
temporary effect on the R-4B since it had insufficient power
to climb clear of VRS.

The R-6 exhibited a general wallowing with harsh
vibration, followed by moderate forward tilting. The
behavior was similar to the R-4 but much less severe. The
forward tilt could be kept to 5–10 deg. Decreasing collective
precipitated nose-down pitching, but increase of pitch and
power suppressed it and the helicopter could be climbed clear
of the region of roughness,

The S-51 behaved like the R-4B and R-6, with the same
type of wallowing, but much less tendency to yaw and the
increase in vibration much less noticeable. The nose-down
pitching was less severe than with the R-4B, but more than
the R-6.

For the Bell 47, at no time was there a complete loss of
control. There was some lateral and longitudinal wallowing,
often with a good deal of yawing, and the usual increase in
vibration level. There was no violent pitching. The flight
path could be maintained, but with coarse control corrections
needed, so it appeared there was a general loss of control
effectiveness.

The Bristol 171 exhibited the most satisfactory
characteristics, somewhat better than the Bell 47. There was
the usual increase in vibration and some wallowing. The
behavior was similar to the Bell 47, but not as sensitive. It
was easy to suppress the general roughness by increasing
pitch and power and climbing clear of the region.

Stewart concluded that the pitching was brought about by
effects of the flow on the fuselage. Stewart also compared
the helicopter VRS behavior with stall of a fixed-wing
airplane. This comparison referred only to the general flight
behavior and sensations experience by pilot; no aerodynamic
relationship in the causes of these effects was implied. There
was no question of aerodynamic stalling in the helicopter
rotor, a fact proved in that increasing collective pitch during
the behavior had a beneficial effect.

Gessow (1954)

Gessow and Myers (Ref. 23) presented the rotor inflow
for axial flight, using low descent rate and autorotation data
from tests of a YR-4B helicopter (Refs. 9 and 14), but
primarily based on the results of Lock and Brotherhood.
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Gessow (Ref. 25) presented a curve that was a composite of
flight and wind tunnel measurements (Refs. 4, 5, 10, 16, 20,
21), including the data of Castles and Gray. Figure 10 shows
these inflow curves.

Gessow (Ref. 25) identified the most important part of
the vortex ring state region as the rates of descent where the
slope of the curve is unstable, because the induced velocity
increases at a faster rate than does the descent velocity. At
fixed pitch, this results in a reduction in thrust with
increased descent velocity. This type of instability is a
contributing factor toward the well-known troubles that
pilots experience when attempting to maintain steady flight
in this region.

Yeates (1958)

Yeates (Ref. 27) conducted flight tests of a tandem
helicopter in descending flight. Vortex ring state was entered
from hover or 10 knots, by reducing power until the
helicopter started to descend. The helicopter appeared to
wallow around while the rate of descent steadily increased.
The pilot recovered by pushing nose down and increasing
forward speed. The vibration measured in vortex ring state
was characterized by large irregular pulsing of the vibration
envelope at a random frequency, which probably indicated
shedding of vortices. The observable occurrence of vortex
ring state (pulsative character of the vibration envelope)
appeared to extend from Vz/vh = –0.23 to –1.25, near zero
forward speed.

For descent with forward speed near zero, the vibration
envelopes were characterized by large irregular peaks,
especially near Vz/vh = –1.03. The vibration envelopes
seemed to pulse at random frequency that appeared to vary in
response to irregular shedding of vortices.

For descent with forward speed, 10 knots (Vx/vh = 0.67)
appeared to be near the limiting speed for observable effects
of vortex ring state. The pulses had more regular occurrence
with forward speed than in hover, possibly indicating more
regular shedding of vortices. Relative to hover, the mean
vibration level increased for the rear rotor and decreased for
the front rotor.

Yaggy and Mort (1962)

Yaggy and Mort (Ref. 28) conducted a wind tunnel test of
a 9.5-ft diameter flapping propeller operating in descent. The
facility was the NASA 40 by 80-Foot Wind Tunnel. The
propeller tested had a solidity of σ = 0.203 and twist of
–22.4 deg. The measured mean thrust and collective were
used to obtain the inflow for the present work (with B =
0.97, rc = 0.26, a = 5.7). In order to produce a reasonable
value of inflow at hover (κ = 1.18), the measured propeller
pitch (70% radius) was corrected to 75% radius collective by
adding 0.05×22.4 = 1.125 deg. This suggests that the
propeller was tested with positive twist (climb

configuration), or could reflect the airfoil zero lift angle. For
the present work, the thrust oscillations were obtained from
the data presented for minimum and maximum thrust. A 12-
ft diameter rigid propeller was tested as well, but attempts to
obtain well behaved inflow results for this propeller were not
successful.

Figure 11 shows the inflow results for axial flow. The
propeller was also tested at α = 75, 60, 45, 30 deg.

Scheiman (1964)

Scheiman (Ref. 29; see also Ref. 41) conducted flight
tests of an H-34 helicopter, including operating conditions in
descent. The operation at various rates of descent and forward
speeds was characterized as rough, moderate roughness, or
heavy roughness. For some cases the blades were flapping
erratically, or the flight was unsteady. For the most extreme
conditions the helicopter was temporarily out of control, or
there was a temporary loss of directional control. The data
are not however sufficient to contribute to the quantitative
definition of the inflow.

Washizu (1966)

Washizu, Azuma, Koo, and Oka (Ref. 30) conducted a
moving track test of a 1.1-m diameter rotor in descent, for
both axial and nonaxial conditions. The rotor had a solidity
of σ = 0.0573 and –8.33 deg twist. Large, semi-periodic
thrust variations were observed, with little torque variation.
The data were low-pass filtered at a frequency of 14 Hz.
Hover data were used to estimate the profile torque, and then
the measured thrust and power gave the inflow, Vz+v = P/T.
For each collective and speed, several inflow values were
plotted, corresponding to the fluctuations in the thrust. For
the present work, the maximum and minimum inflow values
from each set were averaged, to obtain the mean value. In
addition, the blade element expression was used to derive CT
from the inflow and collective values, and hence estimate the
thrust fluctuation ∆T/T.

Figure 12 shows the inflow results for axial flow. The
rotor was also tested at α = 70, 50, 20 deg.

Washizu, Azuma, Koo, and Oka (Ref. 31) tested a tandem
rotor system, for both axial and nonaxial conditions (α = 90,
80, 60 deg). The 1.1-m diameter rotors had a solidity of σ =
0.0573 and –8.33 deg twist (as for the single rotor test). The
rotor overlap was 17% of the diameter. Both rotors were set
to almost the same thrust at the hovering state. The rotors
did not have cyclic pitch control.

Azuma (1968)

Azuma and Obata (Ref. 32) tested a 1.1-m diameter rotor
in a 3-m wind tunnel, operating in axial descent. The rotor
had a solidity of σ = 0.0573 and –8 deg twist. Measurements
were made of the rotor inflow, as well as the thrust and
torque variations. It was observed that for Vz/vh > –0.8 the
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inflow variation was mainly in the tip region. For Vz/vh =
–0.8 to –1.2, the inflow variation was mainly inboard. For
Vz/vh < –1.2, the inflow produced by descent rate gave a net
upward velocity inboard.

Empey and Ormiston (1974)

Empey and Ormiston (Ref. 33) tested a 1/8-scale AH-1G
helicopter (main rotor and tail rotor) in a wind tunnel. The
fuselage and fin were mounted for flow visualization, but not
for force measurements. Tail rotor only measurements were
made for rotor α  = 90 to 0 deg (helicopter yaw), and
collective pitch from 0 to 18 deg. The tail rotor had a
diameter of 1.061 ft, solidity of σ = 0.1051, and no twist.
The thrust and collective measurements were used to obtain
the inflow for this paper (B = 0.97, rc = 0.272). In order to
reduce the variation of the inflow results at high collective, a
lift curve slope of clα = 6.2[1−0.5(6CT/σ)2] was used.

Figure 13 shows the inflow results for axial flow. The
rotor was also tested at α = 80 to 0 deg. In contrast to the
results of Castles and Gray for an untwisted rotor, figure 13
shows a distinct region of negative slope for the Vz+v curve.

Xin and Gao (1993)

Xin and Gao (Refs. 36, 38) conducted a whirling beam
test of rotors in climb and descent, axial and nonaxial flow.
Three 1.1-m diameter rotors were tested: σ = 0.0694 and no
twist; σ = 0.0845 and –5.5 deg twist;  σ = 0.0845 and –9.22
deg twist. Oscillations in both thrust and torque were
observed. Mean and oscillatory thrust and torque data were
presented, referenced to the thrust and torque at hover. A
vortex ring state boundary was determined, based on
inflections in Q/Qhover vs. Vz. Attempts in the present
investigation to transform the data into rotor inflow, which
required estimating the hover thrust and torque, were not
successful.

Felker and McKillip (1994)

Felker and McKillip (Ref. 37) reported a long track test
of a 2.44-m diameter rotor in axial flight. The rotor solidity
was σ = 0.0663, and the blade twist was –8 deg. Both thrust
and torque measurements were presented. Attempts in the
present investigation to derive consistent and reasonable
inflow results from both the thrust and torque data were not
successful.

Padfield (1996)

Padfield (Ref. 39) describes vortex ring state as follows.
At very low flight speeds (less than 10 knots) and moderate
rates of descent (between 500 and 1500 ft/min, depending on
disk loading), the rotor flow becomes entrained in a toroidal
shaped vortex ring that leads to extensive recirculation in
outer regions of the rotor disk. This vortex ring is very
sensitive to small changes in the flow direction, and rapid

fluctuating asymmetric development of the ring can lead to
fierce moments being applied to the fuselage.

As described by Padfield, the response to collective pitch
at steep angles of descent can reverse, so increased collective
is required to descend more rapidly. Operating near vertical
descent, the helicopter can enter a state where high rates of
descent can build up rapidly, and erratic pitch and roll
oscillations can develop. In addition, control effectiveness
can change markedly, particularly collective control, with
normal recovery techniques seeming only to exacerbate the
situation. Analogous to stall in fixed-wing aircraft, at least
in terms of consequences to flight-path trajectory, but quite
dissimilar in aerodynamic origin, the vortex ring condition is
definitely a state to avoid, especially at low altitude. Flying
qualities in vortex ring state become severely degraded and
the pilot's first consideration should be to fly out of the
condition.

Padfield states that standard recovery technique involves
lowering the nose until sufficient speed is gained that the
vortex is washed away, then applying collective pitch to
cancel the rate of descent. Different aircraft types have their
own peculiar characteristics in vortex ring state. Early tests
at RAE produced results from loss of control to mild
wallowing instability. The aircrew manual contains entries
describing the particular features and best recovery
procedures. One such manual notes that rates of descent can
build up to 6000 ft/min if vortex ring becomes fully
established and that the aircraft pitches sharply nose down if
rearward flight is attained. Another refers to an
uncontrollable yaw in either direction eventually occurring,
and any increase in collective pitch during established vortex
ring state creates a marked pitching moment and should be
avoided. All make clear that considerable height will be lost
if the vortex ring state is allowed to develop fully before
recovery action is taken.

Padfield describes an RAE test of the Wessex 2. The
vortex ring region was first encountered at 800 ft/min
descent. With rate of descent at about 800 ft/min, the
helicopter settled into vortex ring state. The rate of descent
increased through 2000 ft/min in spite of increasing power
to the hover torque reading. The vibration level increased,
and considerable amount of control activity was required to
hold attitude, though cyclic controls always responded
normally. Applying full power produced a rapid reduction of
rate of descent as soon as the rotor moved into clear air.
Applying collective prior to lowering the nose resulted in a
height loss of about 150 ft during recovery, whereas if
collective was lowered first and then increased when airspeed
developed, height loss was about 500 ft.

Brinson and Ellenrieder (1998)

Brinson and Ellenrieder (Ref. 40) measured the velocities
in the wake of a rotor operating in vortex ring state. Hot
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wire anemonetry was used to measure the flow of a 1.54-m
diameter rotor in a 2.6×5.5-m wind tunnel. According to
Brinson and Ellenrieder, vortex ring state is characterized by
sudden loss of altitude, large changes in control effectiveness
(especially collective) and erratic, often violent low frequency
pitch and roll oscillations. The wake measurements showed
that within vortex ring state, recirculation occurred across
most of the disc plane and a conical region of reverse flow
existed at the disc center. Wake penetration was very limited
at all but the lowest descent velocities. Periodically a partial
collapse of the recirculation occurred, causing high local
velocities and a highly unsteady flow regime. When vortex
ring state was fully developed, a symmetric, low frequency,
stable limit cycle behavior was evident in the inflow
dynamics, blade dynamics and rigid body dynamics. The
symmetric vertical response of the rotor and affected air mass
was characterized by a state where almost zero cyclic
flapping occurred and where inflow, blade coning, and rigid
body pitch/roll were all in phase. The frequency of the limit
cycle increased slightly as the descent angle reduced and the
energy was high concentrated in a narrow band around 1 Hz
(ωR/vh = 0.62).

Newman (2001)

Newman, Brown, Perry, Lewis, Orchard, and Modha
(Refs. 42 and 50) developed an expression for a vortex ring
state boundary, based on the following concepts. The
vorticity in the wake sheet is convected at the mean of the
velocity of the free stream outside the wake and the velocity
of the flow inside the wake. A measure of the balance
between vorticity deposition by the rotor in the wake (vh)
and the rate at which vorticity is transported away from the
rotor is

VWTV = √Vx2 + (Vz+v)2

VRS occurs at a critical value of VWTV/vh, below which the
net velocity through the rotor is insufficient to allow
convection of vorticity away from the rotor. VWTV-CRIT/vh
= 0.74 matches the axial flow boundary of Drees and Hendal,
but is not good in forward flight. So they postulate that Vx
is less effective than Vz:

VWTVE = √k2Vx2 + (Vz+v)2

VWTVE-CRIT/vh = 0.74, k = 0.65 (0.60 to 0.74 is good)
matches the boundary of Drees and Hendal, and compares
well with data from Brotherhood, Yaggy and Mort, Azuma
and Obata, and Washizu. VWTVE represents the balance
between the rate of growth of vortical structures produced by
instability in the rotor wake and the rate at which these
structures are convected downstream of the rotor.

Brown, Newman, Leishman, and Perry (Ref. 49)
concluded that the onset of vortex ring state is associated
with the collapse of an orderly structure of the rotor wake

into a highly disturbed, irregular, aperiodic flow state. Under
conditions where the upward component of the velocity
normal to the rotor disk plane is a substantial fraction of the
average induced velocity downward through the rotor disk,
such as when descending at high rates or steep angles, the
rotor can encounter vortex ring state. Under VRS conditions,
the wake vorticity produced by the blades cannot convect
away from the rotor and accumulates near the rotor plane,
clumping or bundling together and producing large, aperiodic
airloads. In aerodynamic terms, the onset of VRS is
associated with collapse of an orderly structure of the rotor
wake into highly disturbed, irregular, recirculating flow.
Analysis of the stability of the wake was presented to show
that the location of the boundary of VRS is influenced by
the detailed structure of the rotor wake prior to its
breakdown. Time-accurate calculations of the evolution of
the rotor wake in VRS suggest that location of the boundary
of VRS and the depth of the VRS regime are sensitive to the
blade spanwise loading distribution, which is influenced by
blade twist. Such effects are significant even at low disk
loading, but at high thrust where rotor stall may be
encountered, rotors with and without significant blade twist
show marked, and somewhat counterintuitive, differences in
behavior under VRS conditions.

Betzina (2001)

Betzina (Ref. 43) conducted a wind tunnel test of a single
4-ft diameter rigid tiltrotor operating in descent. The facility
was the NASA 80 by 120-Foot Wind Tunnel. The rotor
tested had a rigid hub, with no gimbal and no cyclic control;
a solidity of σ = 0.1194 and twist of –41 deg (nonlinear).
The tests were conducted with just the rotor; with the rotor
and an image plane (to simulate the other rotor of a tiltrotor
aircraft); and with a rotor, wing, and image plane. The wing
modelled the V-22 geometry, with a flap deflection of 72.5
deg and a nacelle angle of 95 deg. For the present
investigation the measured mean thrust and collective were
used to obtain the inflow (with B = 1.0, rc = 0.2, a = 6).
Measured thrust and power were used to obtain the inflow
with profile power CPo = 0.000327 (based on the hover
performance). In order to obtain similar inflow results from
both T&θ and P/T, an increment of 3.7 deg was added to the
collective pitch, accounting for the airfoil zero lift angle.

Records four seconds long were taken (120 revs,
minimum frequency 0.25 Hz). The data were low-pass
filtered at 100 Hz (3.33/rev). There were high magnitudes of
3/rev and 6/rev harmonics caused by the rigid mounting of
the rotor blades and hubs, and smaller peaks at other
harmonics from 1/rev to 5/rev. So filtered rotor thrust time
histories were obtained by removing all frequency content
above 20 Hz (0.67/rev) using digital post-processing, and
then evaluating the rms of the resulting filtered time
histories.
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Figure 14 shows the inflow results for axial flow. The
rotor was also tested at α = 80 to 0 deg.

Betzina concluded that vortex ring effects begin at descent
angles between 30 to 40 deg. No VRS effects were found at
descent angles less than 20 deg. VRS causes mean rotor
thrust reductions, thrust fluctuations, and an effective
reduction in the rotor's lift curve slope. Betzina identified the
negative damping (roll damping for a tiltrotor) implied by
the change in slope of thrust vs. α , and defined a VRS
boundary based on the maximum mean thrust.

Taghizad (2002)

Taghizad, et al. (Refs. 44, 46, 47) conducted flight tests
of a helicopter operating in vortex ring state. The aircraft
was an SA 365N Dauphin 6075, tested at the French Flight
Test Center (CEV). The aircraft test weight was 3500 kg.
The 5.965-m diameter main rotor had a solidity of σ = 0.083
and twist of –10 deg. The mean induced velocity of the rotor
was estimated from power measurements. The main rotor
power was measured in flight. The profile power was
calculated using the HOST analysis. Estimates of fuselage
drag and download were used to determine the rotor thrust.

Figure 15 shows the inflow results for axial flow (Ref.
47). The helicopter was also tested a forward speeds of 5, 15,
20, 25, and 40 knots.

Taghizad, et al. found the main vortex ring state
characteristic to be a sudden drop in vertical velocity Vz. An
increased level of vibrations was observed when the VRS
area was approached. Then VRS started by a sudden increase
in the rate of descent. Increasing collective did not stop the
Vz fall. During the fall, the helicopter was very unstable and
hard to control. VRS effects disappeared beyond a forward
velocity of approximately Vx/vh = 1. In a VRS encounter,
the pilot's instinctive reaction to the sudden increase in rate
of descent was to increase the collective level to stabilize Vz,
but the rate of descent was generally insensitive to
collective. Increasing collective was an uncertain way to
quickly leave VRS, but a forward velocity increase stabilized
the rate of descent.

Taghizad, et al. concluded that flight in vortex ring state
was unpredictable. Two VRS flights starting from close
conditions could imply very different helicopter reactions.
This chaotic behavior is probably explained by the turbulent
flow producing VRS. For the majority of tests, a collective
increase alone did not permit the helicopter to leave the VRS
regime. Nevertheless, and in contrast to the common
assumption, collective increase did not amplify VRS effects.
The helicopter was generally insensitive to this command
within the VRS area. Collective increase to a level greater
than the hover value allowed the helicopter to leave VRS in
a few cases, but this behavior was not predictable. VRS
flights were also performed without the stabilizer. The

helicopter was then more stable in VRS, in agreement with
Stewart, although the VRS limits were not affected by the
absence of the stabilizer.

The flight tests were conduced with two different flight
procedures to enter vortex ring state: from level flight at a
given forward velocity, collective input was progressively
decreased until the helicopter entered VRS, determining the
VRS upper boundary; or from descending flight, forward
velocity was progressively decreased until VRS was reached,
determining the VRS lateral boundary. For VRS encountered
by progressive collective decrease at fixed forward velocity,
initially each collective decrease produced a small Vz
decrease, then the last collective decrease produced a rate of
descent that typically changed from –5 m/s to –15 m/s. It
was assumed that the helicopter left the VRS regime when
the rate of descent was stabilized. VRS encountered by
deceleration was more complex. Typically it was
impossible to maintain a constant the rate of descent despite
an increase in collective level. Moreover, Vz seemed more
linked to forward velocity than to collective pitch. The VRS
lateral boundary was more difficult to determine than the
upper boundary, so fluctuations level was the best indicator
to determine the VRS larteral boundary, instead of Vz drop.

Taghizad, et al. observed that power and collective in
trimmed vertical descents remained almost constant. They
concluded that this insensitivity to collective explained the
Vz drop when entering the VRS regime. Descending at –5
m/s, any small reduction of collective would lead to a new
trim condition corresponding to a rate of descent greater than
–13 m/s, leading to the abrupt fall of Vz.

A boundary for VRS was developed based on the mean
convection of the tip vortices:

√(Vx/k)2 + (Vz+v/2)2 ≤ ε

with k = 4 and ε = 0.1 for severe fluctuation level, and the
induced velocity v evaluated with an empirical correction in
VRS. The factor k accounts for the tendency of the vortices
to stay in the plane of the disk; Vz+v/2 is the average of the
vertical velocity inside and outside of the slipstream.

U.S. Navy

U.S. Navy NATOPS (Naval Air Training and Operating
Procedures Standardization) contain descriptions of VRS
encounter and recovery. Typically cues begin around 700-800
ft/min rate of descent. The cues include increased roughness
followed by rapid buildup in rate of descent, and loss of
control effectiveness. Recovery requires increasing airspeed
or entering autorotation (altitude allowing).

From H-60B NATOPS: VRS effect is measurable at
descent rates above 700 ft/min and airspeeds from 0–20
knots and is worst at descent rates of about 1500 ft/min with
airspeeds of 5-10 knots. Fully developed VRS is
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characterized by an unstable condition where the helicopter
experiences uncommanded pitch and roll oscillations, has
little or no cyclic authority and achieves a descent rate which
may approach 6000 ft/min. For retreat from the onset of the
vortex ring state, reduce collective and increase airspeed.
Power should be increased once the airspeed is above
approximately 20 knots. The only solution for fully
developed VRS is to enter autorotation to break the vortex
ring and, when cyclic authority is regained, increase forward
airspeed.

From H-46D NATOPS: Power settling in an
uncommanded rate of descent is caused by the helicopter
encountering the vortex ring state as it settles into its own
downwash. Power settling is not restricted to high gross
weights or high-density altitudes. It may not be recognized
and a recovery effected until considerable altitude has been
lost. Helicopter rotor theory indicates that it is most likely
to occur when descent rates exceed 800 ft/min during vertical
descents initiated from a hover and steep approaches at less
than 40 knots. Indications to the pilot are rapid descent rate
increase, increase in overall vibration level, and loss of
control effectiveness. Recovery requires forward cyclic and
decreased collective.

From MH-53E NATOPS: Power settling is the inability
to stop a rate-of-descent when the helicopter begins to settle
into a vortex ring state. A vortex ring state occurs when the
velocity of the downwash from the rotor is approximately
equal to the rate of descent of the helicopter, causing the air
to recirculate up, around, and back down through the rotor
disc. The decreased rotor efficiency that results will cause a
loss of lift, increased roughness, and poor control response.
Settling may not be recognized as power settling, and a
recovery may not be effected until considerable altitude has
been lost. Recovery is best made by increasing forward speed
and decreasing collective pitch. Increased collective pitch
may further worsen the condition. Power settling is most
likely to occur during conditions of high gross weight, high
density altitude, low airspeed, downwind landing, and
descending powered flight. Flight conditions causing power
settling should be avoided at low altitudes because of the
loss of altitude necessary for recovery.

U.S. Army

The U.S. Army Field Manual FM 1-203 (Fundamentals
of Flight) contains a description of VRS encounter and
recovery. The field manual defines settling with power as a
condition of powered flight in which the helicopter settles in
its own downwash, a condition also referred to as the vortex
ring state. Operating conditions conducive to settling with
power are a vertical or near-vertical descent of at least 300
ft/min and low forward speed. The rotor system must also be
using some of the available engine power (20 to 100
percent). During VRS, roughness and loss of control occur

because of the turbulent rotational flow on the blades and the
unsteady shifting of the flow along the blade span.

The field manual has a figure that shows regions of light
and severe turbulence and thrust variation as a function of
horizontal speed and vertical speed, based on the ∆T/T
boundaries of Washizu. From this figure it is concluded that
VRS can be completely avoided by descending on flight
paths shallower than about 30 deg. Power-settling is
described as an unstable condition, in which the rate of
descent can reach extremely high rates. If a large amount of
excess power is applied, recovery can begin during the early
stages of power-settling. If the sink rate reaches a higher
value, power will not be available to alter the vortex ring
state of flow.

According to the field manual, pilots tend to recover from
a descent by applying collective pitch and power. If not
enough power is available for recovery, applying collective
pitch may aggravate power-settling. This results in more
turbulence and a higher rate of descent. The pilot can recover
by increasing airspeed and lowering collective pitch.
Increasing airspeed is the preferred method of recovery, since
usually less altitude is lost by this method than by the
method of lowering collective pitch. In tandem-rotor
helicopters, recovery should be attempted using lateral cyclic
and pedal inputs to make the transition to directional flight.
Longitudinal cyclic inputs (differential collective) may
aggravate the situation.

Assessment of Test Data

Based on this review, there are six reported wind tunnel
and flight test programs that provide data on rotor mean
inflow in vortex ring state that can be used in the present
investigation: Castles and Gray (Ref. 21, axial only); Yaggy
and Mort (Ref. 28); Washizu, Azuma, Koo, and Oka (Refs.
30 and 31), and Azuma and Obata (Ref. 32, unsteady only);
Empey and Ormiston (Ref. 33); Betzina (Ref. 43); and
Taghizad, et al. (Refs. 44, 46, 47).

Nonaxial Flow

A number of investigations have been conducted to
measure the vortex ring state behavior of rotors in nonaxial
flow.

Yaggy and Mort (Ref. 28) tested a propeller at α = 90, 75,
60, 45, 30 deg.

Washizu, Azuma, Koo, and Oka (Ref. 30) tested a rotor at α
= 90, 70, 50, 20 deg; and also (Ref. 31) tested a tandem rotor
system at α = 90, 80, 60 deg.

Empey and Ormiston (Ref. 33) tested a rotor at α = 90 to 0
deg.

Betzina (Ref. 43) tested a tiltrotor at α = 90 to 0 deg.
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Taghizad, et al. (Ref. 46) tested a helicopter at forward speeds
of 0, 5, 15, 20, 25, 40 knots; corresponding to Vx/vh = 0,
0.23, 0.69, 0.92, 1.16, 1.85.

Figures 16 to 21 show the inflow results for nonaxial
flow. For tests conducted at constant rotor angle of attack,
the inflow is plotted both as a function of vertical speed Vz
and as a function of total speed V.

Two Rotors

Washizu, Azuma, Koo, and Oka (Ref. 31) tested a tandem
rotor system, for both axial and nonaxial conditions. Figure
22 compares the inflow results for a single rotor with the
results for the front and rear rotors of the tandem
configuration. It was concluded that the results were about
the same for the front and rear rotors, and for the single and
tandem rotors. However, the periodicity of the thrust
fluctuations, remarkable for a single rotor operating in slight
oblique descent (60 deg), was hardly observable for the
tandem rotor.

Betzina (Ref. 43) conducted a wind tunnel test of a
tiltrotor operating in descent. The tests were conducted with
just the rotor; with the rotor and an image plane (to simulate
the other rotor of a tiltrotor aircraft); and with a rotor, wing,
and image plane. Figure 23 compares the inflow results
(both from thrust and from torque) of the three
configurations at α  = 90, 60, and 30 deg. A significant
difference in the inflow was found at angles from 50 to 70
deg (figure 23b), between the rotor only and rotor with
image plane configurations.

Betzina observed that the presence of the image plane
may help to stabilize the flow, reducing the oscillatory
thrust magnitude. However, the image plane configuration
may not be representative of a two-rotor configuration,
where two unsteady rotor wakes are interacting with each
other. It is anticipated that a two-rotor configuration could
have greater thrust fluctuations than an isolated rotor. The
image plane may not accurately represent the mean effect of
another rotor and certainly was not simulating unsteady
effects of two interacting rotor wakes. Nevertheless, the fact
that an image plane had a large effect indicated that a second
rotor would probably cause significant, although possibly
different, effects.

Unsteadiness in VRS

Vortex ring state is an inherently unsteady aerodynamic
phenomenon. The unsteadiness can be characterized in
several ways. Here it is the total thrust and torque of the
rotor that is of interest. The characteristic frequency, or more
generally the spectrum, of the loads has been measured. It is
expected that the primary scaling of the frequency will be ω
~ vh/R. The minima and maxima of the thrust and power
can be used to define minima and maximum of the inflow,

which would be meaningful for the low frequency variations.
The oscillatory or fluctuating loads (half peak-to-peak or
three times the rms) are an appropriate description of the
vibration associated with vortex ring state.

Castles and Gray (Ref. 21) observed that the fluctuations
in force and moment were very much larger for the twisted
rotor than for the untwisted rotor.

Yeates (Ref. 27) conducted flight tests of a tandem
helicopter. For descent with forward speed near zero, the
frequency was 1.0 to 1.5 Hz at Vz/vh ≅ –0.4; 0.7 to 0.8 Hz
at Vz/vh ≅ –1.1. For descent with forward speed of 10 knots
(Vx/vh = 0.67), the frequency was 1.4 Hz at Vz/vh ≅ –0.3.
Table 2 summarizes the corresponding values of ωR/vh.

Yaggy and Mort (Ref. 28) conducted a wind tunnel test of
a flapping propeller. The thrust oscillations were as large as
±75%. The period of oscillation was about 0.2±0.03 sec
(about 0.3/rev) for all conditions, independent of test
parameters. Table 2 gives the value of ωR/vh.

Washizu, Azuma, Koo, and Oka (Ref. 30) conducted a
moving track test of a rotor. Large, semi-periodic thrust
variations were observed, with little torque variation. In the
spectrum presented, there is a high frequency period of 1–2
sec and a low frequency period of 5–10 sec. Table 2 gives the
values of ωR/vh, using CT = 0.002–0.005.

Washizu, Azuma, Koo, and Oka (Ref. 31) tested a tandem
rotor system. The periodicity of the thrust fluctuation,
remarkable for a single rotor operating in slight oblique
descent (60 deg), was hardly observable for the tandem rotor.

Azuma and Obata (Ref. 32) tested a rotor in a wind
tunnel. A torque variation for high pitch was observed,
especially with untwisted blades. The maximum ∆T/T
(above 15%) was found at Vz/vh ≅ 0.8; the corresponding
∆Q/Q was less than 2.5%.

Xin and Gao (Refs. 36, 38) conducted a whirling beam
test of rotors. They observed oscillations in both thrust and
torque. The spectrum presented has principal frequencies of
1.64, 3.01, and 0.98 Hz for Vz/vh = 0.75. Table 2 gives the
values of ωR/vh, calculated using CT = 0.0055.

Betzina (Ref. 43) conducted a wind tunnel test of a
tiltrotor. With the image plane, the highest oscillatory thrust
(30–52%) was obtained for α = 50–80 deg. The region of
highest oscillation was centered at Vx/vh = 0.37, α = 65
deg, Vz/vh = 0.8 (similar to the region from Washizu, but
the tiltrotor without an image plane was different). The
maximum oscillatory thrust was 52% at α = 60 deg, and the
spectra showed a dominant frequency below 0.25 Hz (hence a
period longer than the data record). Table 2 gives the value of
ωR/vh, based on CT = 0.012–0.015 and V/Vtip = 0.06. The
isolated rotor had lower thrust fluctuations at descent angles
from 30–50 deg, but significantly higher (up to 91%) at
higher Vz/vh and α = 80–90 deg. The spectra showed a peak
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at 0.5 Hz (0.25 Hz for α = 60). Table 2 gives the values of
ωR/vh.

Taghizad, et al. (Refs. 44, 46, 47) conducted a flight test
of a helicopter. For simulations, the unsteadiness was
modelled by adding a fluctuating inflow component,
calculated as the sum of contributions at discrete frequencies
with random phase. The frequencies were obtained from Xin
and Gao (scaled down by a factor of 1.74), and the
amplitudes as a function of Vz from Azuma.

The measured frequency data, summarized in table 2, do
not exhibit any clear trends. Figures 24 and 25 present the
minimum and maximum inflow, from the wind tunnel tests
of Yaggy and Mort (Ref. 28) and Washizu, Azuma, Koo, and
Oka (Ref. 30) in axial flow. The minimum inflow has a
much reduced value of the negative slope of the Vz+v curve
in VRS, perhaps eliminated entirely in figure 25.

Figures 26 to 29 present the fluctuating thrust, from the
wind tunnel tests of Yaggy and Mort (Ref. 28), Washizu,
Azuma, Koo, and Oka (Ref. 30), Azuma and Obata (Ref. 32,
only axial flow, but including torque fluctuations), and
Betzina (Ref. 43). The ∆T/T data show peaks of 40 to 80%.
To facilitate comparisons of the data, contour plots of
constant ∆T/T as a function of Vx and Vz were prepared.
The contours were constructed by fitting ∆ T/T =
f(Vx/vh,Vz/vh) or t = f(x,z) to a second order polynomial:

             t = ax2 + bxz + cz2 + dx + ez + f

               = a(x-x0)2 + b(x-x0)(z-z0) + c(z-z0)2 + t0

using a least-squared-error identification of the coefficients.
The contour for a given value of ∆T/T is then an ellipse.
Figures 30 to 32 show the contours for the tests that were
performed in nonaxial conditions. The three rotors have a
wide range of solidity and twist, and the thrust fluctuation
data exhibit very different character. Figure 31 also shows
the contours that Washizu constructed for ∆T/T = 0.15 and
0.30 (Ref. 30). The contours generated here are somewhat
different, because of the influence of the axial flow
conditions (Vx = 0) on the identification.

VRS Boundaries

A number of the boundaries that have been proposed for
vortex ring state are presented in figure 33. The boundary
from the ONERA VRS model is based on the Vz drop
encountered in helicopter flight tests. The boundary for the
VRS model of the present investigation is based on the
flight dynamics stability of helicopters and tiltrotors. The
other boundaries are based primarily on the vibration and
roughness that a helicopter encounters in VRS. Of particular
note are the boundaries that Washizu constructed for ∆T/T =
0.15 and 0.30 (Ref. 30), which are found in numerous
documents on VRS (including the U.S. Army Field Manual
FM 1-203, Fundamentals of Flight).

Figure 34 presents helicopter VRS boundaries based on
the D6075 flight tests of Taghizad, et al. (Refs. 44, 46, 47).
The vertical velocity drop primarily defines the boundary,
but points where fluctuations increase are also shown. The
boundary from the ONERA VRS model is included.
Taghizad, et al. concluded that at a forward velocity lower
than 20 km/hr, the upper boundary appears at a low and
approximately constant rate of descent, Vz about –4 m/sec).

Figure 35 presents tiltrotor VRS boundaries, based on
flight tests of the V-22 (Ref. 51). The key points are where
the tiltrotor experienced a roll-off as a result of VRS
encounter. Approach to vortex ring state is initially indicated
by an increase in thrust fluctuations. The points shown
correspond to thrust fluctuations greater than 2.5%. Then
asymmetries in the rotor behavior appear, particularly an
increase in differential thrust error.

Figure 2 presented both the helicopter Vz drop and
tiltrotor roll-off data. In terms of flight dynamics stability,
figure 2 demonstrates that VRS primarily scales with the
velocity vh = √T/2ρA. Rotor solidity and twist and aircraft
configuration evidently have a secondary influence.

Vortex Ring State Model

A model is required of the rotor mean inflow in VRS.
The model must be applicable to simple calculations and
real-time simulation, and include the character that leads to
the unstable flight dynamics in vortex ring state. The VRS
model presented here is an empirical extension of
momentum theory. To facilitate development and
applications, the model must be parametric (although a
tabular version could be used for real-time simulation).

Development of the VRS model begins by establishing a
vortex ring state stability boundary as a function of Vx and
Vz, based on the helicopter and tiltrotor flight test data
(figure 2). This stability boundary is where the inflow curve
has zero slope, d(Vz+v)/dVz = 0 (figure 3). Figure 36
summarizes the values of the local minimum and maximum
of the mean inflow in vertical descent, from the available
test data. The stability boundary shown in figure 2 is
constructed such that it encloses most of the flight test
points, and such that the Vz values for vertical descent (Vx =
0) are consistent with figure 36. The equation used to define
this boundary was chosen for convenience in the model
development. An inflow curve in VRS must be constructed
that has zero slope on the specified boundary. This
construction is performed in two steps, illustrated in figure
37. The first step is to eliminate the singularity of
momentum theory at ideal autorotation in vertical descent.
The result of this step is referred to as the baseline model.
The second step is to create the region of negative slope in
vortex ring state. For both steps, third order polynomials
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that provide the required behavior of the inflow as a function
of Vz are identified.

Table 3 presents the algorithm used to calculate the rotor
induced velocity v given values of Vz and Vx. Table 4
summarizes the parameters of the model. All velocities in
the model (v, Vz, Vx) are scaled with vh. For the purposes
of this section, the notation omits division of the velocities
by vh.

To eliminate the singularity of momentum theory, points
A and B are identified on the two branches of momentum
theory for a given Vx (figure 37), and connected by a third-
order polynomial. The coefficients of the polynomial are
identified by matching v and dv/dVz at A, and v at B (with
the constant term of the polynomial set to zero). As Vx
increases the points A and B are moved together, so the
momentum theory result is used entirely when Vx is beyond
a point C. It is necessary to shape the variation of the points
A and B with Vx such that the polynomial is well behaved
(in particular, move the points to the right with increasing
V x, so the polynomial is matched to the right of the
momentum theory peak, where dv/dVz < 0).

A simpler baseline model for the inflow in vortex ring
state and turbulent wake state is

Vz+v = Vz (a Vz2 − b + c Vx2)

for (1.5Vx2+(2Vz+3)2) < 1. Matching this equation to the
axial-flow momentum theory results at Vz = –2 and Vz = –1
gives a = √ 5/6 = 0.373 and b = (4√ 5–3)/6 = 0.991. Then
matching to the forward-flight momentum theory result at
Vx = 1, Vz = –1.5 gives c = 0.598. This model is found in
Ref. 52 and in a widely used comprehensive analysis.
However, the measured data suggest that it is appropriate to
use momentum theory down to Vz = –1.5; and there are
small jumps at the transitions from this curve to momentum
theory for Vx > 0. Therefore a more complex model is used
here.

The stability boundary is specified by the points X and N
for vertical descent (figure 37), and a point M in forward
flight: VzN, VzX, VxM. Appropriate functions are used to
generate a reasonable shape of the boundary, in terms of the
variation of the points X and N with Vx. The VRS model
requires an increment ∆(Vz+v) relative the baseline model,
defined by the inflow values (Vz+v)N at the minimum and
(Vz+v)X at the maximum. Points D and E are specified,
where the VRS model joins the baseline curve. For each of
the three segments of the VRS model (D to N, N to X, X to
E) a third order polynomial for ∆(Vz+v) as a function of Vz
is identified by matching v and dv/dVz (except that for X to
E the slope is not matched at E, so the constant term of the
polynomial is zero). The final inflow value is

v = κ  (vbase + f ∆vvrs)

The factor κ is introduced to account for additional induced
losses, and the parameter f allows the instability in VRS to
be reduced or suppressed (κ > 1, f > 0).

Figure 38 shows the resulting baseline model. The circles
indicate where the polynomial is used to connect the
momentum theory branches in vortex ring state, for Vx <
VxC = 0.75. Figure 39 shows the resulting VRS model. The
circles indicate where the polynomials are used for the three
parts of the curve, for Vx < VxM = 0.95.

For transient conditions, there will be a time lag in the
development of and transition between the flow states of the
rotor. This time lag is modelled by using a first-order
differential equation to calculate the inflow. Let vQS be the
induced velocity calculated by the algorithm above using the
instantaneous velocity and thrust of the rotor; and vTRIM the
trim value. Then

τ  d(δv)/dt + δv = vQS – vTRIM

v = vTRIM + δv

gives the current inflow value v. The time constant is
specified in terms of the rotor revolutions, so τ  =
τrev(2π/Ω).

Figures 40 to 51 illustrate the VRS model, and compare
its results with the available test data. The dashed line in
these figures is the baseline model. The value of κ used is
noted in the figure caption. The VRS model developed here
is not intended to match any specific data set. The lack of
any dependence on rotor parameters such as solidity and twist
is undoubtedly significant.

Calculated Stability Boundary

The VRS model was implemented in an analysis to
calculate the flight dynamics of helicopters and tiltrotors.
Figure 52 shows the damping calculated for the heave
(vertical velocity) mode of a helicopter operating in vertical
descent. The simplest model has only the vertical degree of
freedom (no other aircraft rigid body motion, no blade flap
motion, and quasistatic inflow). With complete aircraft
dynamics (all aircraft rigid body motion and rotor blade flap
motion) but quasistatic inflow, the damping of the heave
mode is unchanged. Introducing the time lag in the inflow
equation reduces the damping magnitude but does not change
the descent rate at which the damping is zero. For all three
cases, the stability boundary (zero damping) is at the values
of Vz/vh that were specified in the model (VzN and VzX).
With the baseline model, the helicopter is stable in vortex
ring state. Figure 53 shows the damping calculated for the
heave mode of the helicopter in forward flight.

Figure 54 shows the damping calculated for a tiltrotor
operating in vertical descent. For the symmetric dynamics,
the damping of the heave (vertical velocity) mode is plotted.
The behavior is identical to that of the helicopter (figure 52)
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except for a change in magnitude of the damping. For the
antisymmetric dynamics, the damping of the least damped
mode is shown. In this case the model with just axial
motion has only the roll degree of freedom, and the model
with all motion has the aircraft side and yaw degrees of
freedom as well as the rotor gimbal motion. The
antisymmetric dynamics of the tiltrotor in vortex ring state
are evidently more complicated than the symmetric
dynamics.

Figure 55 compares the calculated stability boundary of
the flight dynamics of a helicopter, with the boundary
specified in the VRS model. The differences between the
boundaries from the eigenvalues and from the VRS model
reflect primarily the fact that the eigenvalues were calculated
on a rather coarse grid of Vx/vh and Vz/vh (only 0.1
resolution).

Helicopter VRS Encounter

Taghizad, et al. (Refs. 44, 46, 47) present flight test
results for the Dauphin D6075 encountering vortex ring
state. The data consist of the measured vertical and horizontal
velocity in response to a reduction in collective pitch. Two
cases, identified as vertical and forward, are described by
Taghizad, et al. as follows. The first case was vortex ring
state initiation in vertical descent. The pilot progressively
decreased the collective pitch (figure 56). At first Vz
responded normally to collective inputs. The first two
collective reductions of about –0.2 deg produced a Vz
decrease of about 2.5 m/sec. The third collective reduction,
rather smaller than the previous ones, led to a descent rate
higher than 15 m/sec. The second case was an example of
vortex ring state initiation by collective decrease at fixed
forward velocity (about 10 knots). Forward velocity was kept
constant and collective progressively decreased (figure 56).
At first, each collective decrease produced a small Vz
decrease. The last collective decrease produced a rate of
descent that changed from –5 m/sec to –15 m/sec.

The helicopter behavior during these vortex ring state
encounters was calculated using a representative model of the
D6075, described in table 5. The degrees of freedom
considered are the rigid airframe motions, rigid blade flap and
pitch, and the inflow time lag. An auxiliary force was used
for antitorque in place of the Fenestron, so the yaw degree of
freedom was not included in the maneuver calculations. The
equations were integrated using a time step of 0.0025 sec,
corresponding to 5.4 deg azimuth. The velocity sensor for
the calculations was in the inertial axes. A simple autopilot
was used, feeding back roll rate to lateral cyclic, and pitch
rate and horizontal velocity error to longitudinal cyclic. The
inflow model used (Vz+v)X = 1.25 and a time constant of τ
= 14 revs.

The aircraft gross weight used was 3500 kg, and the rotor
speed was 360 rpm. Hence vh = 11.2 m/sec = 2200 ft/min =
21.7 knots; CT = 0.005, CT/σ  = 0.059, λh = 0.05. The
initial conditions for the maneuver were obtained by
averaging the first 20 sec of the measured velocities. The
analysis trimmed the helicopter to these initial conditions
(velocity and flight path angle). The calculated maneuver
started at the point of initial collective decrease in the
measured data. The two cases were calculated for the
following conditions:

a) Vertical: 4.25 knots and –8.2 deg descent angle (horizontal
velocity 2.16 m/sec, vertical velocity –0.31 m/sec);
calculations started at 26.7 sec in the measured data; total
collective change about –0.7 deg; autopilot target forward
velocity 2.16 m/sec.

b) Forward: 12.4 knots and –1.5 deg descent angle
(horizontal velocity 6.39 m/sec, vertical velocity –0.17
m/sec); calculations started at 19.8 sec in the measured data;
total collective change about –0.9 deg; autopilot target
forward velocity 5.9 m/sec.

The values of the measured collective pitch change used in
the calculations are shown in figure 56.

Figures 57 and 58 compare the measured and calculated
helicopter response, for the vertical and forward conditions.
Good calculation of the vertical velocity is obtained using
the VRS model, while the baseline model (momentum
theory with the ideal autorotation singularity removed) does
not produce the correct behavior. The calculated vertical
acceleration az clearly shows the character of the Vz drop.

The good correlation between measured and calculated
helicopter vertical velocity during VRS encounter establishes
that the VRS model is accurate, and more generally confirms
the association of this behavior with the negative slope of
the inflow curve. That the corresponding comparison
between the VRS model and the inflow velocity obtained by
Taghizad, et al. (figure 51) is not very good probably reflects
the difficulties involved in obtaining such inflow
information from flight tests in VRS.

Figures 59 and 60 show the influence of the inflow time
constant on the calculated velocities. These results establish
the value of τ = 14 revs for this problem. Figures 61 and 62
show the influence of the value of the inflow peak, (Vz+v)X.
The calculated vertical velocity is not very sensitive to this
parameter. Figure 63 shows the influence of the autopilot
target forward velocity on the calculated vertical velocity, for
the forward case.

Figure 64 shows the results of attempted recovery by
means of a collective pitch increase on the calculated
velocity and vertical acceleration. A collective increase of
about 1 deg (the collective change relative trim set to a
constant 0.3 deg) was introduced at 55, 60, and 65 sec into
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the maneuver. Although a positive change in normal
acceleration was produced in each case, only the control
change at 55 sec was successful in recovering from the VRS
encounter.

Taghizad, et al. (Refs. 44, 46, 47) developed an empirical
inflow curve, which was implemented in the HOST code.
Using this analysis, the mean characteristics of the VRS
observed during the experimental studies were well
reproduced. They concluded that both D6075 flight test and
HOST calculations demonstrated that vortex ring state can be
considered as an unstable region.

The present calculations for the D6075 establish an
appropriate value for the inflow time constant: τ = 14 revs
(2.4 sec), for CT = 0.005 and λh = 0.05. The dimensional
time constant should scale as t ~ R/vh. Hence the general
result is τrev = 0.7/λh. For the V-22 then, with CT = 0.013
and λh = 0.08, the time constant value is τ = 9 revs (1.3
sec).

Tiltrotor VRS Encounter

Representative behavior of a tiltrotor encountering vortex
ring state was calculated using a model of the V-22,
described in table 6. A complete model of the aircraft in
helicopter mode was used. The pilot's controls were
connected to the rotor collective and cyclic. The degrees of
freedom considered were the rigid airframe motions, rotor
gimbal motion with rigid blades, and the inflow time lag.
The equations were integrated using a time step of 0.002 sec,
corresponding to 4.9 deg azimuth. The velocity sensor for
the calculations was in the inertial axes. A simple autopilot
was used, feeding back roll rate to lateral control (rotor
differential collective), and pitch rate and horizontal velocity
error to longitudinal cyclic. The inflow model used (Vz+v)X
= 1.25 and a time lag of τ = 9 revs.

The aircraft gross weight used was 46100 lb, and the
rotor speed 409 rpm. Hence vh = 65.2 ft/sec = 3900 ft/min =
38.7 knots; CT = 0.013, CT/σ  = 0.122, λh = 0.08. The
initial conditions for the maneuver were Vx/vh = 0.6, Vz/vh
= –0.35 (26.8 knots, –30 deg flight path angle; autopilot
target horizontal speed 23.2 knots). The analysis trimmed
the tiltrotor to these initial conditions (velocity and flight
path angle). Then the collective pitch change shown in
figure 65 was introduced to produce the VRS encounter.

Figure 66 shows the calculated velocity, normal
acceleration, roll angle, and differential collective. The initial
conditions are symmetric (wings level) flight, and the rotors
are identical, so the tiltrotor encountering VRS exhibits a Vz
drop, much like the helicopter. Flight tests have
demonstrated however that the characteristic tiltrotor
behavior in VRS is roll-off, not Vz drop. Figure 66 also
shows the calculated response when the tiltrotor is trimmed
in an asymmetric condition, either with –15 deg sideslip or

with a 0.5 ft lateral center-of-gravity offset; but the rotors are
still identical. The result is still primarily Vz drop, with
little roll angle or differential collective.

Figure 67 shows the calculated response obtained with
asymmetric rotor aerodynamics, produced by using f = 0.3
on the left rotor to suppress its unstable axial behavior in
VRS. Now as vortex ring state is approach, the roll
autopilot introduces substantial differential collective in order
to keep the wings level with the different aerodynamic
behavior of the two rotors. When, in addition, a 2 deg limit
on the differential collective is imposed, the tiltrotor begins
to roll when the control limit is reached. A rapid and
substantial increase in roll angle is produced in this case.
The calculated results in figure 67 are typical of tiltrotor
behavior in VRS encounters (Ref. 51).

The roll-off that is typical of tiltrotor VRS encounter
appears to be associated with differences between the
aerodynamics of the two rotors, not with the aircraft
dynamics. That difference was simulated here by simply
suppressing the unstable VRS behavior of one rotor, but the
actual aerodynamic mechanism remains undetermined.
Possibly the difference between the two rotors reflects the
low frequency unsteadiness and randomness of vortex ring
state. The aerodynamic interaction between the two rotors
may also be a factor.

Model for Real-Time Simulation

As an empirical extension of momentum theory, the
VRS model developed here is suitable for implementation in
a real-time, piloted simulation. Probably the calculation of
the inflow as a function of rotor horizontal and vertical
velocity in descent would be performed to generate a table,
and the table interpolated for the real-time calculations.

The vibration increase as VRS is approached is an
important cue. The vibration can be implemented as either a
thrust or inflow variation, with the appropriate spectrum.

The random, low frequency variations of the VRS
aerodynamics could be simulated, or a completely
deterministic model could be used. The choice depends much
on the training philosophy. For a tiltrotor there must be
some mechanism, again either random or deterministic, to
introduce a difference in the aerodynamic behavior of the two
rotors.

Conclusions

This paper has reviewed the available wind tunnel and
flight test data for rotors in vortex ring state. It is observed
that the flight test data for a helicopter and a tiltrotor define
essentially the same VRS boundary, in spite of a different
manifestation of the instability, and large differences in twist
and solidity between the rotors of the two aircraft.
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Test data for axial flow, nonaxial flow, two rotors,
unsteadiness, and vortex ring state boundaries have been
described and discussed. Based on the available measured data,
a VRS model has been developed. The VRS model is a
parametric extension of momentum theory for calculation of
the mean inflow of a rotor, hence suitable for simple
calculations and real-time simulations. The VRS model is
primarily defined in terms of the stability boundary of the
aircraft flight dynamics.

Calculations of helicopter response during VRS
encounter were performed. Good correlation was shown with
the Vz drop measured in D6075 flight tests. Calculations of
tiltrotor response during VRS encounter were performed,
showing the roll-off behavior characteristic of tiltrotors.
With a symmetric rotor aerodynamic model, tiltrotor
response to VRS encounter was a vertical velocity drop, as
for the helicopter. By introducing differences between the
aerodynamics of the two rotors of the tiltrotor, roll-off was
calculated. Hence it is possible, using a model of the mean
inflow of an isolated rotor, to explain the basic behavior of
both helicopters and tiltrotors in vortex ring state.

Future Work

It is next necessary to correlate calculations of tiltrotor
behavior in vortex ring state with flight test measurements.
This is probably best accomplished as part of the
development and validation of a real-time implementation of
the VRS model for the rotor inflow.

Assessment of Test Data

There are six reported wind tunnel and flight test
programs that provide data on rotor behavior in vortex ring
state. The behavior of the flow that produces the unstable
aircraft dynamics is clearly established by these test data, and
the stability boundary appears scalable.

There is not enough data to establish the influence of
twist, solidity, and other rotor parameters on VRS
aerodynamics.

There are probably facility effects in some of the tests.
There may be wind tunnel wall effects in the data of Castles
and Gray. The image plane in the data of Betzina probably
did not produce a good simulation of a second rotor. There
may be scale effects in the data of Empey and Ormiston.

Based on reported helicopter behavior in VRS regarding
loss of cyclic control, there is probably an instability in the
character of rotor cyclic and linear inflow gradients in VRS,
similar to the instability in the character of collective and
mean inflow. There is however no available data relevant to
such a phenomenon.

In spite of the focus of many investigations on the
unsteady nature of VRS flow, there are no clear trends in the
data for frequencies or thrust fluctuations. This might reflect

more sensitivity to the rotor parameters than is found for the
mean thrust and power data. The possible relation between
random, low frequency variations in VRS aerodynamics and
the asymmetric behavior of tiltrotors is not elucidated by the
available data.

Recommended Tests

A test of a rotor in vortex ring state must be conducted in
a very large wind tunnel, so there is no question of wall
effects, with a large enough rotor to avoid problems with
scale. It should be a flapping rotor with moderate flap hinge
offset and cyclic control. The usual test matrix (thrust or
collective; and Vx and Vz, or V and α) is appropriate. Cyclic
control variations must also be investigated. Data records
must be long enough to establish the low frequency character
of the flow.

The configurations investigated should include a matrix
of solidity and twist (and possibly blade number), sufficient
to establish the influence of these parameters on VRS. A
tiltrotor configuration will be required to establish the
magnitude and importance of rotor-rotor interference on VRS
behavior.

Such an extensive test program will be difficult to justify
based on helicopter and tiltrotor experience with VRS
operations. Yet without such experimental data, many
aspects of VRS aerodynamics will long remain elusive.

Recommended Analysis

If good correlation with the six data sets described in this
paper could be demonstrated, then analysis could be used
with confidence to examine the influence of rotor parameters,
cyclic control, rotor-rotor interference, and other features of
vortex ring state aerodynamics. Each data set has some
unique characteristics, which must be captured by the
analysis. It would be necessary to account for the specific
aspects of the test facilities involved.

As vortex ring state aerodynamics involve unsteady,
large-scale vortex structures, such an analysis program would
be a major task, but one well worth the resources in terms of
the knowledge to be gained about an important aspect of
rotary wings.
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Table 1. Tests of rotors in vortex ring state.

date reference facility N R, ft Vtip, ft/sec σ twist angle of attack inflow

Lock, Glauert 1926 1–2,4–7 wind tunnel, 7 ft 2 1.5 200–230 0.074 –9.6 (P/D=.3) 90 T&θ

Brotherhood 1949 16 flight, R-4B 3 19 448 0.058 0 90 T&θ, P/T

Reeder and Gustafson 1949 15 flight, R-4B 3 19 448 0.058 0 90

Drees 1949 17–20 ground 2 0.5 90, etc.

Castles and Gray 1951 21 wind tunnel, 9 ft 3 3 377, 502 0.05 0 90 T&θ, P/T

wind tunnel, 9 ft 3 3 377, 502 0.05 0, 3/1 taper 90 T&θ, P/T

wind tunnel, 9 ft 3 3 377, 502 0.05 –12 90 T&θ, P/T

wind tunnel, 9 ft 3 2 251, 335 0.05 0 90 T&θ, P/T

Gessow 1954 8,9,14,23 flight, R-4B 3 19 448 0.058 0 90 P/T

alternate blades 3 19 448 0.042 –8.5 90 P/T

Yeates 1958 27 flight, tandem 3 17.5 500

Yaggy and Mort 1962 28 wind tunnel, 40x80 3 4.75 348–701 0.20 –22.4, flapping 90,75,60,45,30 T&θ

wind tunnel, 40x80 3 6 440–691 0.18 –46.6, rigid 90 T&θ

Scheiman 1964 29 flight, H34 4 28 623 0.062 –8 90, etc.

Washizu 1966 30 moving track 3 1.80 189 0.057 –8.33 90,70,50,20 P/T

Washizu 1966 31 moving track, tandem 3 1.80 189 0.057 –8.33 90,80,60 P/T

Azuma 1968 32 wind tunnel, 3m 3 1.80 189 0.057 –8 90

Empey and Ormiston 1974 33 wind tunnel, AH-1G tail rotor 2 0.53 515 0.105 0 90 to 0 by 10 T&θ, P/T

Xin and Gao 1993 36,38 whirling beam 2 1.80 265 0.069 0 90,75,60,45,30 T&θ, P/T

2 1.80 265 0.085 –5.5 90,75,60,45,30 T&θ, P/T

2 1.80 265 0.085 –9.22 90,75,60,45,30 T&θ, P/T

Felker and McKillip 1994 37 long track 4 4.00 180 0.066 -8 90 T&θ, P/T

Betzina 2001 43 wind tunnel, 80x120 3 2 377 0.119 –41 90 to 0 by 10 T&θ, P/T

Taghizad 2002 44,46,47 flight, Dauphin 4 19.6 656 0.083 –10 90, etc. P/T

Table 2. Measured frequencies in vortex ring state.

ωR/vh condition

Yeates 1.4–2.0 axial, Vz/vh = –0.4

0.95–1.1 axial, Vz/vh = –1.1

1.9 Vx/vh= 0.7, Vz/vh= –0.3

Yaggy and Mort 3–5 all

Washizu 0.7–1.4, 0.14–0.3 axial

Xin and Gao 1.3, 2.5, 0.8 axial, Vz/vh = 0.75

Brinson 0.6 axial

Betzina < 0.1 α = 60, V/vh = 0.7, image plane

0.2 α = 80–90, rotor only
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Table 3. Algorithm to calculate the rotor induced velocity in vortex ring state.

The following algorithm calculates v given values of Vz and Vx (all scaled with vh).

The algorithm assumes VzA > VzB; VzD > VzN > VzX > VzE; and VzX ≥ VzA.

1) if Vz ≥ 0 or Vx ≥ VxC, momentum theory is used

2) baseline curve

2.1) end points

VzAID = VzA + 0.2 (Vx/VxC)2

VzBID = VzB + 0.2 (Vx/VxC)2

and if Vx/VxC > 0.5 then VzBID = VzBID + 0.7 (VzAID – VzBID) (2Vx/VxC – 1)3

2.2) if VzBID < Vz < VzAID then identify v = bVz + cVz2 + dVz3

matching at VzAID: momentum theory v, dv/dVz

matching at VzBID: momentum theory v

2.3) otherwise momentum theory is used

3) VRS model: if Vz < 0 and Vx < VxM then

3.1) stability boundary

VzDID = VzD

VzNID = 0.5(VzN + VzX) + 0.5(VzN – VzX) (1 – (Vx/VxM)2)0.2

VzXID = 0.5(VzN + VzX) – 0.5(VzN – VzX) (1 – (Vx/VxM)2)1.5

VzEID = VzE + (VzXID – VzX)

3.2) if VzEID < Vz < VzDID then identify ∆(Vz+v) = a + bVz + cVz2 + dVz3; otherwise momentum theory is used

3.2.1) if VzNID ≤ Vz < VzDID then

match at VzDID: ∆(Vz+v) = d∆(Vz+v)/dVz = 0

match at VzNID: ∆(Vz+v) = ((Vz+v)N–(VzN+vNmom)) (1–(Vx/VxM)6)0.5 and d∆(Vz+v)/dVz = – (1 + dvbase/dVz)

3.2.2) if VzXID ≤ Vz < VzNID then

match at VzNID: as above

match at VzXID: ∆(Vz+v) = ((Vz+v)X–(VzX+vXmom)) (1–(Vx/VxM)6)0.5 and d∆(Vz+v)/dVz = – (1 + dvbase/dVz)

3.2.3) if VzEID < Vz < VzXID then

match at VzXID: as above

match at VzDID: ∆(Vz+v) = 0 (not matching slope, so a=0)

3.2.4) baseline curve slope

dvbase/dVz= dv/dVz of momentum theory or

dvbase/dVz = b + 2cVz + 2cVz2
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Table 4. VRS model parameters (velocities scaled with vh);
points refer to figure 37.

point parameter value

baseline model

A VzA –1.5

B VzB –2.1

C VxC 0.75

VRS model

D VzD –0.2

N VzN –0.45

(V+v)N 0.85

X VzX –1.5

(V+v)X 1.25

E VzE –2.0

M VxM 0.95

Table 5. D6075 helicopter model.

articulated hub

blade radius R 5.97 m

solidity σ (chord = 0.4 m) 0.085

number of blades 4

twist –10 deg

Lock number (mass = 7.5 kg/m) 6.6

Table 6. V-22 tiltrotor model.

gimballed hub

blade radius R 19.04 ft

solidity σ (tapered blade) 0.105

number of blades 3

twist (nonlinear) –38 deg

Lock number 5.0

Figure 1. Smoke flow visualization of a rotor in vortex ring
state (Drees, Ref. 20).
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Figure 12. Washizu (1966) moving track test: axial flow; σ
= 0.0573, θtw = –8.33 deg.
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Figure 13. Empey and Ormiston (1974) wind tunnel test:
axial flow; σ = 0.1051, θtw = 0.
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Figure 14. Betzina (2001) wind tunnel test: axial flow; σ =
0.1194, θtw = –41 deg, rotor only.
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Figure 15 Taghizad (2002) flight test: axial flow; σ = 0.083,
θtw = –10 deg.
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Figure 16a. Yaggy and Mort (1962) wind tunnel test:
nonaxial flow; σ  = 0.20, θ tw = –22.4 deg, flapping
propeller.
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Figure 16b. Yaggy and Mort (1962) wind tunnel test:
nonaxial flow; σ  = 0.20, θ tw = –22.4 deg, flapping
propeller.
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Figure 17a. Washizu (1966) moving track test: nonaxial
flow; σ = 0.0573, θtw = –8.33 deg.
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Figure 17b. Washizu (1966) moving track test: nonaxial
flow; σ = 0.0573, θtw = –8.33 deg.
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Figure 18a. Empey and Ormiston (1974) wind tunnel test:
nonaxial flow; σ = 0.1051, θtw = 0.
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Figure 18b. Empey and Ormiston (1974) wind tunnel test:
nonaxial flow; σ = 0.1051, θtw = 0.
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Figure 19a. Betzina (2001) wind tunnel test: nonaxial flow;
σ = 0.1194, θtw = –41 deg, rotor only; from thrust.
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Figure 19b. Betzina (2001) wind tunnel test: nonaxial flow;
σ = 0.1194, θtw = –41 deg, rotor only; from thrust.



36

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

V
z+

v/
v h

α = 90

α = 80

α = 70

α = 60

α = 50

α = 40

α = 30

α = 20

α = 10

α = 0

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Vz/vh

v/
v h

Figure 20a. Betzina (2001) wind tunnel test: nonaxial flow;
σ = 0.1194, θtw = –41 deg, rotor only; from torque.
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Figure 20b. Betzina (2001) wind tunnel test: nonaxial flow;
σ = 0.1194, θtw = –41 deg, rotor only; from torque.
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Figure 21 Taghizad (2002) flight test: nonaxial flow; σ =
0.083, θtw = –10 deg.



38

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

V
z+

v/
v h

single rotor, α = 90, θ = 0-8.0

single rotor, α = 70, θ = 7.5

single rotor, α = 50, θ = 7.5

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Vz/vh

v/
v h

Figure 22a. Washizu (1966) moving track test: single rotor;
σ = 0.0573, θtw = –8.33 deg.
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Figure 22b. Washizu (1966) moving track test: front rotor;
σ = 0.0573, θtw = –8.33 deg.
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Figure 22c. Washizu (1966) moving track test: rear rotor; σ
= 0.0573, θtw = –8.33 deg.
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Figure 23a. Betzina (2001) wind tunnel test: influence of
image plane; σ = 0.1194, θtw = –41 deg; axial flow, α = 90
deg.
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Figure 23b. Betzina (2001) wind tunnel test: influence of
image plane; σ = 0.1194, θtw = –41 deg; nonaxial flow, α =
60 deg.
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Figure 23c. Betzina (2001) wind tunnel test: influence of
image plane; σ = 0.1194, θtw = –41 deg; nonaxial flow, α =
30 deg.
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Figure 24. Yaggy and Mort (1962) wind tunnel test:
minimum (dotted) and maximum (solid) inflow; σ = 0.20,
θtw = –22.4 deg, flapping propeller; axial flow, α = 90 deg.
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Figure 25. Washizu (1966) moving track test: minimum
(dotted) and maximum (solid) inflow; σ = 0.0573, θtw =
–8.33 deg; axial flow, α = 90 deg.
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Figure 26. Yaggy and Mort (1962) wind tunnel test: thrust
fluctuations; σ = 0.20, θtw = –22.4 deg, flapping propeller.
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Figure 27. Washizu (1966) moving track test: thrust
fluctuations; σ = 0.0573, θtw = –8.33 deg.
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Figure 28. Azuma (1968) wind tunnel test: thrust and torque
fluctuations; σ = 0.0573, θtw = –8.3 deg; axial flow, α = 90
deg.
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Figure 29a. Betzina (2001) wind tunnel test: thrust
fluctuations; σ = 0.1194, θtw = –41 deg; axial flow, α = 90
deg.
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Figure 29b. Betzina (2001) wind tunnel test: thrust
fluctuations; nonaxial flow, α = 60 deg.
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Figure 29c. Betzina (2001) wind tunnel test: thrust
fluctuations; rotor only.
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Figure 29d. Betzina (2001) wind tunnel test: thrust
fluctuations; rotor and image plane.
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Figure 29e. Betzina (2001) wind tunnel test: thrust
fluctuations; rotor, wing, and image plane.
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Figure 30. Yaggy and Mort (1962) wind tunnel test: thrust
fluctuations; σ = 0.20, θtw = –22.4 deg, flapping propeller.
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Figure 31. Washizu (1966) moving track test: thrust
fluctuations; σ = 0.0573, θtw = –8.33 deg.
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Figure 32a. Betzina (2001) wind tunnel test: thrust
fluctuations; rotor only.
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Figure 32b. Betzina (2001) wind tunnel test: thrust
fluctuations; rotor and image plane.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Vx/vh

V
z/

v h

∆T/T = 0.05

∆T/T = 0.10

∆T/T = 0.15

measured points

∆T/T = 0.20

∆T/T = 0.25

∆T/T = 0.30

Figure 32c. Betzina (2001) wind tunnel test: thrust
fluctuations; rotor, wing, and image plane.
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Figure 33. Vortex ring state boundaries.
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Figure 34. Helicopter VRS boundaries.
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Figure 35. Tiltrotor VRS boundaries.
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Figure 36. Summary of minimum and maximum points of
measured inflow in vertical descent (scaled to v/vh = 1 at Vz
= 0).
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Figure 38. Rotor inflow from baseline model.
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Figure 39. VRS model.
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Figure 40a. Castles and Gray (1951) wind tunnel test: axial
flow; σ = 0.05, θtw = 0, constant chord; κ = 1.15.
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Figure 40b. Castles and Gray (1951) wind tunnel test: axial
flow; σ = 0.05, θtw = 0, 3:1 taper; κ = 1.15.
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Figure 40c. Castles and Gray (1951) wind tunnel test: axial
flow; σ = 0.05, θtw = –12 deg, constant chord; κ = 1.15.
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Figure 40d. Castles and Gray (1951) wind tunnel test: axial
flow; σ = 0.05, θtw = 0, constant chord, R = 2 ft; κ = 1.15.
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Figure 41. Yaggy and Mort (1962) wind tunnel test: axial
flow; σ = 0.20, θtw = –22.4 deg, flapping propeller; κ =
1.15.
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Figure 42. Washizu (1966) moving track test: axial flow; σ
= 0.0573, θtw = –8.33 deg; κ = 1.05.
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Figure 43. Empey and Ormiston (1974) wind tunnel test:
axial flow; σ = 0.1051, θtw = 0; κ = 1.10.
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Figure 44. Betzina (2001) wind tunnel test: axial flow; σ =
0.1194, θtw = –41 deg, rotor only; κ = 1.05.
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Figure 45 Taghizad (2002) flight test: axial flow; σ = 0.083,
θtw = –10 deg; κ = 1.20.
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Figure 46. Yaggy and Mort (1962) wind tunnel test:
nonaxial flow; σ  = 0.20, θ tw = –22.4 deg, flapping
propeller; κ = 1.15.
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Figure 47. Washizu (1966) moving track test: nonaxial
flow; σ = 0.0573, θtw = –8.33 deg; κ = 1.05.
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Figure 48. Empey and Ormiston (1974) wind tunnel test:
nonaxial flow; σ = 0.1051, θtw = 0; κ = 1.10.
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Figure 49. Betzina (2001) wind tunnel test: nonaxial flow; σ
= 0.1194, θtw = –41 deg, rotor only; from thrust, κ = 1.05.
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Figure 50. Betzina (2001) wind tunnel test: nonaxial flow; σ
= 0.1194, θtw = –41 deg, rotor only; from torque, κ = 1.05.
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Figure 51 Taghizad (2002) flight test: nonaxial flow; σ =
0.083, θtw = –10 deg; κ = 1.20.
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Figure 52. Calculated damping of heave mode for helicopter
in vertical descent (real part of eigenvalue, positive value
unstable).
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Figure 53. Calculated damping of heave mode for helicopter
in forward flight (real part of eigenvalue, positive value
unstable).
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Figure 54. Calculated damping of flight dynamic modes for
tiltrotor in vertical descent (real part of eigenvalue, positive
value unstable).
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Figure 55. Calculated flight dynamics stability boundary for
helicopter.
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Figure 56. Helicopter VRS encounter: collective control
change. Measurements from D6075 flight test (Refs. 44, 46,
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Figure 57. Helicopter VRS encounter: comparison of
measured and calculated response; vertical case. Measure-
ments from D6075 flight test (Refs. 44, 46, 47).
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Figure 58. Helicopter VRS encounter: comparison of
measured and calculated response; forward case. Measure-
ments from D6075 flight test (Refs. 44, 46, 47).
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Figure 59. Helicopter VRS encounter: influence of inflow
time constant; vertical case.
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Figure 60. Helicopter VRS encounter: influence of inflow
time constant; forward case.
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Figure 61. Helicopter VRS encounter: influence of inflow
peak value; vertical case.
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Figure 62. Helicopter VRS encounter: influence of inflow
peak value; forward case.
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Figure 63. Helicopter VRS encounter: influence of autopilot
target forward speed (forward case).
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Figure 65. Tiltrotor VRS encounter: prescribed collective
control change.
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Figure 64. Helicopter VRS encounter: recovery by collective
increase (vertical case).
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Figure 66. Tiltrotor VRS encounter: calculated symmetric
response.
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Figure 67. Tiltrotor VRS encounter: calculated asymmetric
response.


